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ABSTRACT

Until recently, much of the budget planning for software

systems has been primarily targeted at costs incurred during

the development phase. However, with increasing software

system life span and complexity, maintenance costs have

become a mcre prevalent concern. As a result of necessary

corrections for design errors and evolutionary maintenance,

post-delivery investment in software systems now requires a

greater proporticnal share of the life-cycle costs. In this

research, various methodologies and system factors relating

to software cost accounting are reviewed with the intent of

developing a cost ccntrcl model for arriving at a

well-structured view for the management of the maintenance

phase of the softwdre life-cycle. The model proposed

embodies a planning concept for establishing a maintenance

strategy and a control concept for analyzing manloading

requirements during the maintenance phase.
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I. jkRODUCT1O1

A. THE PROELEM

Recent literature is replete with dire predictions about

the ultimate costs of software maintenance. In 1973, costs

of software in the United Stares were $20 b:llicn C I ] and

-.hey are_ p:ojected to be $200 billion in 1985 '2]. It aas

been hypothesized that anywhere from fcrty tc ninety-five

9ercent of the manpower effort in typical industrial appli-

cations occurs during the maintenance phase of the software

life cycle. (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Although there are numerous models in existence that

leal with software costs, none deal specifically with the

costs of 'pure' maintenance during the latter phase of the

software life-cycle. It appears that much of the Federal

Government and industry tend to use a general definition of

software maintenance and treat it as a level of effort on

"arious tasks rather than that effort allocated to specific

tasks. Consequently, these organizations do not really

know :he true costs cf their software maintenance.

The goal of this work is to investigate the methodology

of software cost accounting, and to evaluate and develop a

cost model for the prediction of pure software maintenance

costs.
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3. BACKGRCUND

The term 'Software Maintenance' is very nebulous. De-

partment of Defense Directive 5000.29 alludes to software

3ain-enance by stating:

"Correctness of software, reliability, integrity, main-
t3inability, ease of modification, and transferabilitx
will be major considerations in the initial design.
[15]

Used in this thesis is a composite definition of software

maintenance to encompass those actions taken by a system

user to retain an existing system in, cr restore it to, an

operable condition. This includes:

1) corrections to counteract detected hugs;

2) enhancements to add fuDctions;

3) modifications to delete or change existing functions in
their nature or scope;

4) implementaticn strategy to match changed conditions or
requirements. C 16, 17, 18, 19, 20, 21, 22, 23, 2N]

'Pure' maintenance or. the other hand is restricted to

that work accomplished during the maintenance phase of the

software life cycle in the pursuit of the following goals:

I) Relialibility of Software - the ability of the software
to produce consistent results wbenever the customer
uses the prcduct;

2) rror Correction - changes made tc counteract errors.
The2 priority of correction is directly related to the
seriousness of the error;

3) Softwars Laintainability - extending the useful life of
a proqram by untangling a messy one, generalizing a
speci ic one, cr annotating an unreada ble one.

13



.cbert Glass [25) defines the best software maintenance

-s no maintenance at all. That is, no changes are needed be-

cause no errors were committed and all changes were antici-

pated. He then goes on to list six attributes of software

maintenance:

1) laintenance is intellectually very difficult. Problems
cannot be bcunded. The cause cculd be anywhere.

2) maintenance is technically very difficult. Problems
cannot be specialized. They could surface because of
errors in the coding, design, architecture, cr concept.

3) laintenance is unfair. Usually the person who is main-
taining a product did not write it and must interpret
what the original author meant. Documentation is in-
adequate most of the time.

4) Maintenance is nc-win. People only come to maintenance
with problems.

5) Maintenance is infamous. There is very little glory,
noticeaole progress, cr chance for 'success'.

6) Naintenance lives in the past. The general quality of
code being maintained is often terrible. This is part-
ly because it was created when everybody's understand-
ing of software was mcre rudimentary and partly be-
cause a great deal of code is produced by people before
they beccae really good at programming.

Researchers do not appear to be using the same defini-

tion when working on the costs of maintenance. Those who es-

tima-e maintenance costs to be near forty percent of iife-

cycle costs seem to be using a definition closer to that of

'pure' 2aintenance while those who estimate maintenance as

high as ninety-five percent are obviously using a very

14



general definiticn. According to recent surveys, most

(sev.nty to eighty-eight parcent) maintenance effort is

spent modifying software to accomodate changes and to im-

prove software performance rather than to correct errors

which were not discovered during systems development. (26,

27, 28] These surveys have been substantiated by analyses

done on three large scale systems:

1) Pacific Telephone - Service Order Retrieval and Distri-
bution System;

2) Bell Telephone Laboratories - Automated Repair Service
Bureau Sy.tem;

3) VISA, Inc. - Base II World Wide Credit Card Transaction
Interchange System. [29]

Although hardware costs have decreased by over two

orders of magnitude and programmer productivity has in-

creased by one order of magnitude in the last ten years, the

total costs of systems are continuing to rise wi:h the

greatest portion of effort and cost spet after development

completion [30]. There appear to be four primary reasons

for this phenomenon:

1) Maintenance is people intensive;

2) The number of systems has increased substantially;

3) The mission of the software seems to be expanding;

4) Average sistem life has increased from three years in
1960 o ive years in 1970 to eight years -n 1980.
[31, 321

15



A recent DOD study reports that developzent costs for

Air Force avionics software averaged $75 per instruction

while maintenance costs lie in the range of $4,000 per in-

struction [33] This indicates that ninety-eight percent of

the life-cycle costs of that system are spent cn software

maintenance. Ancther study concludes that fifty percent of

the costs for Navy Airborne Antisubmarine Warfare Tactical

Software is spent on maintenance software [34]. As one can

see, there are many different meanings cf the term 'software

maintenance' and as many different assessments of its cost.

The software industry does not appear to be unified in

its approach to decreasing the high ccst of maintenance.

McClure states:

"A solution that focuses upon the production phases of the
software life cycle does not address the major portion of
the maintenonce effort... We must directly address
maintenance issues rather than hope that they will disap-
pear by improving the development process." [35]

Most of the literature expounds the theory that, to be done

properly, software maintenance should be a conscious goal

from the beginning cf the software development process.

maintenance is all too often left out of planning considera-

tions and then treated as a helter-skelter, uncoordinat-d

activity rather than a planned, methodical, controlled nec-

essary business function [36]. Long term planning, Just as

16



in cther disciplines, includes the provision of appropriate

tools. There are two major categories cf tools for mainte-

nance. Technical tools encompass such things as compilers,

traps and traces, dumps, ccmparators, editors, reformatters,

and preprocessors. Administrative tools include Froblea re-

porting vehicles, status reporting vehicles, and documenta-

tion systems. (37, 38, 39]

Even with the knowledge and use of these tools, produc-

tivity, which is typically measured in software lines of

code (SLOC) is substantially lower for maintenance program-

mers than fcr development programmers. According to Daly,

maintenance productivity can be as low as twenty percent of

development productivity (40]. There appear to be three

main reasons fcr this phencuenon:

1, There is a stigma attached to the job of software
maintenance. Management rarely rewards gocd work in
doing maintenance as generously as good work in doing
development. aoth coworkers and management personnel
act as though they hcld maintepance wor in low esteem.
To survive, every person must have self respect. If a
job is not perceived as important, a person probably
will not perform to the best of his abilities.

2) Usually, maintenance personnel are not intimately fa-
miliar with the ccde that they are assigned to aain-
rain. Typicall.y a maintainer Is assignea -. soonsaoi1-
tv for- 000 SLOC ui]. because documentation is

quite often poor, the maintainer must study the code
itself and try to understand what the original develop-
er created and wh he I mplemented it in that manner.
Usually ha must study a great deal more code than the
affected area to avoid inducing bugs in a seemingly un-
related area by the fix that is impiemented.

3) The wrong grade of people are typically used to staff
maintinance efforts FS42, 43, 44, 45, '46, '47, i48, '49)
Tradition4ly, maintenance efforts are bein s:afzed y
less experiace personnel than development projects.

17



Rowever, maintenance personel should he senior people
bscause software maintenance is a microcosm of the en-
tire software development process. The ma4.ntainez does
a systems analysis of a problem area leading to a re-
qu~rements definition. Donning a designer's hat tae
maintenance person then outlines the impact or the
cbange on *the product. Beit a flexible individual,
the maintainer now codes the esign solution. After
the results of these efforts have been tested and veri-find the revised product is finally released to the
wo.id&. The maintenance person also plays a liaison
role with the customer by axplaining anoma ous outputs,
negotiating changes that are needed as opposed to nose
that are desired, and interpreting the computer's
unique constraints. As you can see, the person who
maintains a complex system should be a highly talented
and motivated individual. [ 50, 51, 52]

C. RESEARCH METHCDOLCGY

1. " SaueSac

nanual searches and automated system searches of the

literature showed little had been published in this field.

Although there is a lack of published material that deals

directly with a fiscal approach to plahning and control of

software maintenance, the researchers found a great deal

that was very useful as background information and which

helped to develop the theory for the planning and control

model.

2. Telephcne Cen ve.;sA io

Efforts to uncover informal sources that deal spe-

zifically utth t.hs costs of 'pure maintenance' failed. The

following organizaticns were contacted in the course of the

research, with no significant resul-ts:

Army Compiter Systems Command, Ft. Belvoir, Va.;

DOD Computer Institute, 4ashington, D.C.;
18



FEDSIM, Washington, D.C.;

Homestead Software Support Facility, Homestead, Fl.;

IBM Federal systems Division, Gathersburg, Md.;

Kapur Nssociates, Danville, Ca.;

National Security Agency, T303, Ft. Meade, Md.;

Naval ecurity Group Activity, Skaggs Island, Ca.; and

NARDAC San F:anciscc, Alameda, Ca.

maintenance tracking data, dealing with Goddard

Space Flight Center projects, was ootaioed from the Data and

Analysis Center for Software, Griffis AFB, NY. Unfortunate-

ly, the late ar:ival of the data and fcrmat incompatibility

precludod inclusicn of this data.

Unpublished documents descrioing a matrix mazagement

method of functicnal area analysis developed by Mr. Kyle

Rone, IBM Federal Systems Division, Houston, Tx. were

obtained and significantly contributed to the formulation of

the final model.

D. ORGANIZATION OP THE THESIS

tn this intrcduction the problem has been stated, ".ts

importance iiscussed, and it has been placed in the context

of the overall computer system development process. Chapter

two covers various aspects of the problems encountered when

19



_sm.'.mating/deteraining the cost of software maintenance.

?his spgcific backgrcund 3ateral is needed to understand

the models that will be presented in chapters three and

four. Chapter three thoroughly discusses existing models in

two areas: those that work with Norden-Rayleigh curves, and

those that encompass complexity aetrics. Chapter four gives

the authors' model which is based on bcth macro-estimating

(total system) and micro-estimating (unit composition) tech-

niques. Finally, chapter five summarize the thesis and

puts forth, conclusions and recomsendati&,

20



Ii. UAMIIFYING SOFTWARE MAINTENANCE

A. THE SOFTWARE PROBLEM

There are two mai.n reasons that maintenance has become a

predominant cost in scftware systems. First, the volume of

completed systems which require maintenance dominates the

systems under development as more and more long-lived large

systems are completed and delivered. Second, software sys-

tems require a ccnsiderably greater proportional investment

in error correction and evolutlonary maintenance after de-

livery than other engineering products.

Numerous technological advances have not solved zoftware

problems. They have increased the demand for software, and

opened up opportunities to use computers in new applications

which place increasingly severe demands on software tech-

nology. Often the tendency is simply to ignore these pron-

lers. Because these problems are both technical and mana-

gerial in their scope, a "systems engineering" solution is

needed.

Unlike hariware operation and support models, where the

cost of spares, maintenance manhours, material, training,

etc., can be estimated based on some physical characteris-

tics of the syst-m, software maintenance effort is s-tictly

21



i function of manhours to perform the necessary action.

Thus far, maintenanca costs for software seem to be primari-

ly an estimate by an expert, someone familiar with the

changes to be made to a program, rather than putting certain

parameters into a cost estimating relation and calculating

annual maintenance costs.

Software maintenance costs cannot be ascribed to one

specific agent or event but instead to the combined action

of many factors. By reviewing some of these, the complexity

of the problem can be better understood. In this research,

an attempt is made tc isolate areas that can be estimated by

formulas and then to establish the mathematical relation-

ships. As such, the following :opics will be discussed as

they relate to the maintenance function:

I) Software Life-cycle;

2) Life-cycle Interrelaticnships;

3) Software Evclution;

4) Productivity;

5) Complexity Metrics; and

6) Error Prediction.

22



B. THE SOFTWARE LIF!-CYCLE

In the mid 1970's, the phrase "software life-cycle" was

ccined and became a popular means for conveying the basic

concepts of a software system: multiple phases and extended

life. Many representations of the life-cycle exist; by com-

monly accepted practice, the software life-cycle ccn.istz of

-.he 4evelopment phase and the maiAterance phase taken col-

lectively. Depicted in Figure 2.1 is a composite schematic

showing this relationship.

This diagram oversimplifies the importance of the

maintenance phase. A more accurate role of the maintenance

function is detailed in the life cycle model (figure 2.2)

lveloped by Rome Air Development Center [53]. From this

view, maintenance performed during the operation and support

phase is seen to be a highly interactive process. The con-

jecture apparent from the diagram is that the same procedur-

al requirements fcr software develcpment must be duplicated

luring the maintenance phase.

The basis of applying a life-cycle management scheme to

software is to direct attention to all phases encompdssed by

the system life-cycle and the contribution of each phase to

the total life-cycle expenditures. Familiarity with and

23
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understanding of the life-cycle can help managers make ef-

fective distribu-tion of the resources for a software system

which will ultimately ?ffect the maintainability of the

software.

The life-cycle curves, more recently called "Rayleigh"

curves, were o.ginally formulated by Lord Rayleign, tne

British Nobel Laureate. Presently, these curves are used to

represent resource allocation (manpower) of a software pro-

ject. Preliminary research in this area was directed at re-

source consumption in research and development (R&D) pro-

jects. In a series of studies ccnducted by Peter Norden

r54] of IBM, it was established from a large body of empiri-

cal evidence that large R&D projects follow a life-cycle

pattern as described by the Rayleigh (manpower) equation:

-t2
y' = 2Kate (2.1)

where

Y1 = the number of person-years of effort expended

per year,

K = the tcral nuzter of person-years required over

the life-cycle,

a = the curve shape parameter,

t = elapsed time in years, and

e = exponential function.

26



The principle of the curve is as follows: Researca has

indicated that tbere are regular patterns of manpower build-

up and phase-out in complex projects. These patterns are

made up of a small number of successive phases or cycles of

work thoroughout the life of the project. Norden linked the

cycles to obtain a project profile. When the indi-viduar

cycles are added together, they produce the profile of the

4ntire pro jec : (figure 2.3).

TIME
ki YIYAI

PROJEC CTWv

FiRrO23. PrjetEroTl

eANNNG TESoaTn ti &( umnts uigfnlsae
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Morden's studies (55], cumulative resource allocation up to

this time acccunts for approximately forty percent of the

life-cycle. Occuring at the loy end of the curve Is the op-

eration and maintenance phase which absorbs the remaining

sixty percent of LLze-cycle expenditures. The greater por-

,.on of costs associated with this phase are attributed to

the "maintenance tail"1 or expected oie f the softwazd pro-

iuct. Failure repaiz, however, ;.s just a small part of

post-de livery maintenance act.-6vitmi*es. Studies (5o] show

-:hat coling errors account for only thirtz-y percent of the

Post-delivery errors. The greater share (seventy percent) is

3ccasiorned because there is a mistake in design or specifi -

cation. Although the code performs exactly as designed, this

!-as not =aflect the original operational desires.
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Logically, it would seem that maintenance manpower

requirements wculd decrease over time due to growth in reli-

ability. In other words, as programming and design errors,

which are commonly called "bugs", are found and corrected,

the time to the next system failure should increase through-

out the maintenance phase of the life-cycle. This reliabil-

ity assumption, however, is disputable. Maintenance action

taken in response to error cccurance can have three possible

o utco mes:

1) t e actual error is corrected;

2) the error is corrected, but the fix induces a new
error;

3) the error is not corrected, and the program remains
non-operational.

Raliability growth, then, is a probabilistic event which de-

pends heavily on the skills cf the maintenance programmers.

If the maintainers are competent, reliability should grow.

Another controversial assumption is growth in maintain-

ability. When maintainability is viewed as the time re-

quired to return a software system to an cperating status

following a system failure and maintainability growth is

viewed as the decrease in time required to correct an error,

then an obvious conclusicn would be grcwth in maintainaoil-

ity. Several factors, however, may produce an opposing
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conclusion, i.e. decaying maintainability. Patchwork fixes,

in addition to introducing new errors, may produce module

interface problems and documentation inefficiencies will

complicate the finding of other errors. Reduced familiarity

with a software system, stemming from frequent personnel

-urnover, can be an inhibitor. Documentation and software

(programming) standards and controls may not be enforced on

new releases. Error identification and correction may be-

come further entangled when configuration control is lax.

Again, the comp-tence of the maintainers will influence the

:esults.

C. LIFE-CYCLE INTERRELATICNSHIPS

The management process for the maintenance cf software

involves decisiors in establishing control of changes to the

software and in providing for the implementation of improved

functional capability throughout the life-cycle of the soft-

ware. The planning to acquire and implement resources for

software maintenance must:

1) consider ths entire life of the software, and

2) begin early in the life of the software in order to
reserve funding and identify sufficient resources for
the future.
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Different time spans and levels of effort exist for the

different phases of a software project. The failure to ob-

tain quantitative relationships of a precision comparaole

to those available for estimating the costs of hardware sys-

tems has led to the belief that irterrelationships exist

among life-cycle phases. That is, the amount of resources

used in early phases impacts heavily cn the resource re-

quirements for later phases. Using an approach similiar to

basic eccnomic production theory, Thibodeau and Dodson [57)

developed a mathematical mcdel to describe -the complexity of

the phase interrelations. This relationship is given in the

form:

a b
Q A L (2.2)

where

Q = the level of output,

K = the amount of capital input,

L = the amount of labor, and

A, a, and b are empirically derived constants.

Graphically, this is shown in figure 2.5.

To add a term representing technological change or to

account for different classes of labor or capital, the num-

ber of input rescurces can be expanded to

al a2 b
Q AK K L (2.3)

2
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Figure 2.5. Economic Production Curve

Ia order to indicate trade-offs between life-cycle phases,

the same general formulation can be used and expressed as

b c I k
P = aX X X X (2.4)

d C t M
where

P = software production resulting from tne applica-

tion of the resources,

X = perscn-months of inputs,

a, b, c, 4, and k are empirically derived con-

stants, and

subscripts 1, c, t, m represent designiiag, codLng,

tssting, and maintenance respectively.

A further asserticn made by Thibodeau and Dodman indi-

cited that limitations in design resources (e.g. a reduction
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in planned resources) may be passed through the development

phases with final impact in the maintenance phase (higher

error rates). Based on the aathematical postulate previous-

ly described, this type of relationship can be ihowL by the

graph in figure 2.6.

PM

Coding

or

Testing

Maintenance Effort

?igure 2.6. Application of Eroduction Theory

In describing the infinite set of relationships, table I

illustrates some departures from the ideal which may occur,

and how a reducti.n or increase of resources in these phases

will be reflected in the error rate of the delivered soft-

ware. While it can be argued taat the ideal error rate may

be zero, a more pract-ical solution would be to avoid de-

dicating in enormous amount of resources to achieve zero

errors. As a result, it would be expected that for most
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information systems, planning would allow for some marginal

error rate. However, this tolerance of errors does not nec-

essarily apply to tactical defense systems.

D. SOFTWARE EVOLUTION

Operational software systems undergo a continuing pro-

cess of evolution, the phases of which are repair, modifica-

tion, enchancement, and adaptation. Continuing evolution is

the visible sign of continuing interaction between the sys-

tea and its environment. Even it --and this rarely, if

ever, occurs-- its first implementation was perfectly con-

ceived, perfectly designed, and perfectly implemented, a

program will require general maintenance.

Evolution dynamics is a theory describing the change of

a software system over a period of time. The theory distin-

guishes between Eror essive work (to introduce new features)

and antiqrissive work (fault correction, testing activity,

and inv.stment in methodology to combat the complexity which

grows with system size) (58]. The basic assumption of pro-

gramming evolution dynamics is that it is legiti2ate and

necessary to view a large program and its maintenance orga-

nization as interacting systems. Thus one must search "for

models that represent laws that govern the dynamic behavior
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TABL- I

Hypothetical Phase Interrelationship Trade-offs

Hypothetical cases

I I
I I--------------------------------------I

I1 2 3 '4 5 6 7 81

--------------------------------------------------- I
lAnalysis and design > = = < = = = I

lCoding and checkcut = < = = < < I

ITesting >= = > <

I

Imaintenance = = = = = = > I

I I

IChanges No No No No Yes Yes No Nol

I I
IReported error rate < > = > > > I

I ---------------------------------------------------------- II

I I
I Symbols: I

= equal to ideal I

> greater than ideal I

< less than ideal

3 I
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of the metasystem of organization, people, and progzam ma-

"erial involved in the creation and maintenance process"

(59, 60].

Feedback is basic to the process since -the system and

system designers are considered as a metasystem. The key to

good faeadback is int nsive use over time. The more the

software is used, the better it gets, as long as deficien-

cies are fed back into the maintenance group and corrections

are made. This statement holds true provided that the main-

tainers introduce fewer errors than they resolve. Likewise,

the longer it is used the less the probability that the sys-

tem contains major deficiencies. In analyzing a software

development system, a simple beginning would be as shown in

figure 2.7. When pressure is exerted tc provide bigger re-

leases (later versions of a system that contain enhancements

and/or corrections), the results are more complexity, re-

duced quality, and growth rate limiting factors. Eventual-

ly, releases are made solely for restructuring/rewriting.

It this point, a fission effect is possible where excessive

qrowth leads to system breakup.

Various published papers (61, 62] have discussed the

characteristics and dynamics of the evolution of large
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Figure 2.7. Development Release Cycle

programs, with the most significant contribution cf research

lone by Lehman and Belady [63, 64]. Their efforts were di-

rected at understanding the dynamics of the software life-

cycle, thereby creating an enhanced environment of manageri-

al awareness and an understanding of system behavior. Long

term unpredictability of the system development and maizte-

nance processes have been attributed to the human i4rterface.

However, it has been found that measures of system activity

such as number of modules handled, inter-release t..me, and

total number of modules in the system, show an unusual
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regularity. Since this regularity could not be attributed

to management decisions, Lehman and Belady have tried to

analyze it through the use of evolution dynamics. By de-

scribing the environment of program creation and maintenance

in terms of regularities, trends, and patterns, they have

proposed laws governing the evolution dynamics (taDie II).

Fea tures of these evolutionary trends were further sup-

ported in a more recent study by Leintz nd Swanson [65].

Analysis of data obtained from an extensive survey indicated

that the magnitude of a maintenance effort can be explained

by the combined efforts of four variables: system age, sys-

tem size, relative amcunt cf routine debugging, and the re-

lative experience of the maintainers. The relationships of

these variables were codeled as shown in figure 2.8. Amount

of maintenance effort, the dependent variable, is seen to be

influenced through five other causal paths involving four

variables. Each causal path is initiated from the iadepen-

lent variable, system age.

E. PRODUCT:VITY

Productivity is often considered a measure of the trans-

formation of meaningful and controllable units of input to

meaningful and controllable units of output. !he question of
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TABLE II

Laws of Evolution Dynamics

CONTINUING CHANGE

rA :ogram that is used and zhat, as an implementation
of" its soecifcation, reflects some other reality,
underaies ccntinuinq change or becomes progress'vely

I less iseful. THe c ange or decay process continues
until it is judged more cost ezzectlve to replace the
program with a recreated versicn.

INCREASING COMFLEXITY

As in evolving roaraw is continuously changed, its
complexit y, afzlecting deterioratino sturcture, in-
creases unless work iS done to maintain or reduce it.

THE FUNDAMENTAL LAW
(OF PROGRAM EVOLUTION)

Program evclution.is subject to a dynamics which
makes the Rrogramming process, and hence measures of
global project and s stem attributes, self-regulating
with statismically eterminable trends/invariances.

CONSERVATION OF ORGANIZATION STABILITY
(INVARIANT CEK RATED)

The glcbai activity rate in a project supporting an
evolving prcoram is statisicaily invariant.

CONSERVATION OF FAMILIARITY
(PERCEIVED CCMPLEXITY)

The release con-ent lchanges, additions, deletions)
of the successive releases or an evolving program is
sta-istically invariant.

qiality must be urderstood in all measures of produc-ivizy,

if they are -to have meaning. It is far easier to oe acze

productive when Froducing throwaway products than it -s when

producing high quality output.
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I Relative I

I Development I

I ExperienceI

(-1 I (-1

I Amount o: I (+) I Amount I

System Age l->l Maitenance j< -- I of Routine I

I Effort I I Debugging I

( I (+)

I System Size

Fiqure 2.8. Casual Paths of Maintenance Effort

If software is sized in terms of a product measure such

as the number of instructicns or modules, then the assumed

personnel productivity against those measures is a key vari-

ant In the estimate. Since producing software is a very

labor intensive activity, consuming greater than eighty five

?ecn- of the resources allccated for sofzware development

r661, an essential ingredient for arriving at an accurate

cost estimate cf the software lies in ;ersonnel productivi-

ty. Generation cf software is creative and, therefore, a

wide variance across personnel productivity can be expected.
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3udget estimations required for software development

have led to an abundance of research explozing the topic o.

programming productivity (67, 68, 69] Traditional measures

of software productivity have included:

1) dollars per defect,

2) lines of code (LOC) per person-month (PM),

3) dollars per LOC,

4) Iollars per PM, and

5) complexity branch per 1000 LOC.

laintanance researchers pose the yet unanswered ques-

tion: Can the same criteria be applied for productivity

luring the maintenance phase? Within a maintenance scenar-

.o, module constituents of a software application can be

categorized as new, modified, retained, and converted (fig-

ure 2.9). New segments consist of entirely new code. Modi-

fied segments are composed of changed code and the unchanged

code that may be affected by the changed code. Retained

code consists of previously developed and tested segments

that will be integrated into the software products without

being modified. Converted code is existing code converted

to ancther language. Each of the categories of code, when

related to a specific product, may produce a unique produc-

tivity rate.
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Retained Modified New Converted

Segments Segments Segments Segments
I I I I

I - - I I

I I I I I

Retained Unchanged Changed New Converted

Code code Code Code Code

Figure 2.9. Categories of Program code

Factors which influence productivity have been widely

researched. Data collected from sixty projects by Walston

and Felix showed that significant relationships existed

between productivity (SLOC) and the ratio of developed code

to the sum of criginal (or reused) code plus the developed

code (70]. The zesulting plot shown in figure 2.10 suggests

-.hat productivity is highest when thers is no =rig'nal or

reused code, that is, when all the code is developed from

the inception of the project. As the percentage of reased

code grows, the expected prcductivity decreases.
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Figure 2.10. Productivity - Reused Code Relationsaip

3ecent investigations done by Swanson and Leintz, :e-

vealed that while productivity techniques have been exten-

sively discussed, few systemic studies of benefits in tae

maintenance phase have been conducted [71]. Figure 2.11

shows some, but not all, cf the .actcrs commonly cited as

indices of productivity.

laintenance ccsts must be v.ewed collectively with pro-

luctivity. To dc less is to focus on only part of the
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Pigure 2.11. Prcductivity Determinants

issue. It could be a misleading focus if management dic-

ta-es :olicies that result in high productivity duriLg de-

velopment work but adversely affect the productivIty of

post-ielivery maintenance. If the productivity is negative-

ly affected because cf internal problems prior to delivery
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or reduced qulli-y when in use, then costs will increase and

affect the poten,ial to complete other projects.

F. CO3PLEXITY 8ETRICS

Quantitative metrics which assess the complexity of

software continue to attract a high degree of interest.

These metrics are assumed to be valuable aids in determining

the guality of scftware. A collection of such metrics which

assess numerous factors that constitute this nebulous "soft-

ware quality" have been proposed [72, 73]. Such factors in-

clude reliability, portability, maintainability, and myriad

other xxx-abilities.

Potential uses for measures which assess these various

factors are manifold. Importance of metric relationships

lies in the follcwing areas:

1) As feedback to programmers, they car be used during de-
velopment to indicate potential prcblems with develoied
code(7.4)* A design is evaluated wi h the metric re a-
tions hips in mind. If it appears that this design tails
outside of the metric bounds, then another design must
be contemplated.

2) In guiding software testing, McCabe's cyclomatic number
has been prcposed as a means of assessing the compua-
tional complexity of the software testing problem 75].
Other metrics which index the quality or complexity of
software may help identify modules or subrcutznes which
are likely to be most error-infested.

3) If cne of a combination of metrics can be empirically
related to the difficulty programmers experience, then
more accurate estimation can be made ot the manpower
that will be necessary during maintenance.
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In using these metrics, it is important to distinguish

between the ccmputational and psychological complexity of

software, since reasons for assessing them differ Coam -

_ional complexity refers to "the guantitative aspects of the

solutions to computational problems" [76] such as comparing

the efficiency of alternate algorithmic solutions. To il-

lustrate, as the number of distinct control paths tarough a

proqram increases, the computational complexity may in-

crease. Ps_ chojogscai c_1Ij= refers to characteristics

of software which make it difficult to understand and work

with. Psychological complexity can then be thought of as

assessing human performance on programming tasks. Subse-

quent sections will discuss currently used metrics that aave

been coupled with the maintenance effort in an attempt to

predict programmer effort required to complete a specific

zaintenance task.

1. Halstead' _g

During the last few years research aimed at the de-

velopment of a "software science" has supported the conten-

tion that there may be simple theoretical explanation for

the structural characteristics of many computer programs and

t hat -here Is a strong quantitative relationship between
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these characteristics and the effort required tc write pro-

grams [77, 78, 79]. Based on the thecry of software sci-

ence, five entities of an algorithm expressed in a language

are measureable:

n = number of distinct operators,1

n = number of distinct operanas,
2

N = total number of operators,1

N = total number of operands, and
2

n = number of input/output parameters for the2
algorithm.

From these measurements, some defined properties for pro-

grams can be calculated: length (N), vocabulary (n), volume

(V), and program level (L). [80)

Using the simple relationships between these metrics

and the effcrt (B) required by a programmer, Halstead ar-

-ived at an expression of effort (total number of elementary

2ental discriminations) to generate a given program where

n . (N + N ) !og (n + nV 11 2 2 1 2
-- -- - -- - -- - -- - - (2.5)
L 2n

2

By applying the Stroud number, which is the zumber

of eleientry pieces of. data that a perscn can mentally sep-

?rate per second (S), a dimension of time .s intrcduced to

the effort e.uaticn:
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E V
T - --- (2.6)

S SL

where T indicates the estimated time fcr programming. Ex-

cept for the Stroud number, all parameters on the right side

of the equation are dizectly measureable for any implementa-

-ion cf an algorithm. Research methods using calculated T

valuss have shcwn that a strong correlation exists with the

actual time measurements in the absence of certain "impuri-

ties" which correspond to common undesirable programming

practices such as unstructured code, low module cohesive-

ness, high module coupling, etc. [81).

2. McCabe's v(G)

More recently, T. McCabe Z82] developed a complexity

definition based on the decision structure of a program.

IcCabe's metric is the classical graph theory cyclomatic

number v(G) defined as:

v(G) = number of edges - number of nodes
+ 2(numter of connected components).

Two simpler methcds of calculating v(G) a-e presented by

IcCabe: the number of predicate nodes plus 1 or the number

of regions computed from a planar graph of the control flow.

Literally, this complexity metric counts control

path segments which, when combined, will generate every
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possible path thrcugh the program. Since additional control

paths could make a program &ore difficult to understand, the

number of basic paths indexed by this metric may also relate

-o mental difficulty of a programming task.

G. ERROR PREDICTION

If managers knew how a program behaved for every con-

ceivable ccmbination cf inputs and could accurately predict

all future input combinations, then they would kncw precise-

ly how many errors are in that program and could predict at

which point in time that the program would next fail. As a

result, i would be fairly simple to program resources for

software maintenance. The only real decision, then, would be

whether the annoyance from the error was worth the effort to

eliminate it. Because this ideal situation is not a realis-

tic representaticn of the world, except in the most trivial

programs, it would ce a great aid to managers to have a

method to predict residual errors with a reasonable degree

of csrtainty. This capability would arm them with a good

guide for programming the amount of maintenance effort need-

ed for the next time period.

In the early days of computing, managers obtained rough

estimates of the number of errors in a module by assuming
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that there was one tug in every sixty lines of code or

perhaps in every cze hundred lines of ccde depending on each

manager's optimism and experience C83]. It seems to be a

reasonable assumption that there is a better way to predict

residual errors. The iupcrtance of error detection analysis

his been recognized in the past few years and many studies

have addressed this problem. (84, 85, 6, 87, 88, 89, 90,

91] An important objective of most of this work has oeen

to develop analytical techniques to examine the error phe-

nomenon in order to compute or predict items of interest

such as the number of errors detected at time t, the pre-

sumed number of remaining errors at time t, and the software

reliability function. (It should be noted that none of

these studies deals specifically with the detection or the

prediction of errors during the maintenance phase of the

software life-cycle.)

One would expect software reliability to improve with

age because latent bugs are detected and are presumaiy cor-

rected. However, there are exceptions to this general state-

ment. Bugs can be induced into programs while corrections

are being made. This situation, called the "ripple effect",

generally happens in very large systems like O/S360 instead
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of small systems like a compiler [92]. When a change is

made in module 'A' it affects the way module 'B' works. The

maintainer has neither the desire to change another module

nor, probably, any idea that his change would affect another

module. With vast, complex systems it is impossible for any

person to know all of the ramifications of a change. Since

most operational software is subject to enhancements aad

changes in requirements because of the dynamic environaent

in which it Is run, it can be expected that bugs will be in-

iuced with the new code and that other modules will be af-

fected through interfaces with the new modules. In the long

run however, it appears that most software projects follow

:he predicted process and have fewer errors as time elapses

[93). Table III [94) provides data to support this phenome-

non. Observe the great variability of the data and the inz-

creased reliability as time passes.

Although the code appears to become more reliable as

time passes, there are still problems with error prediction

models. Many of these models assume a constant error ra:e

(95, 96, 97, 98, 99]. This does not strike one as being a

:easonable assumption on three accounts. First, the failure

:ate will fluctuate because the frequency of execution of
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TABLE III

Successive Execution Times Between Failures

(neasured in seccnds, read left to right and top to bottom.)

9 2 91 112 15

138 50 77 24 108

38 670 120 26 114

325 55 242 68 422

180 10 1146 600 15

36 4 0 8 227

65 176 58 457 300

97 263 452 255 197

193 6 79 816 1351

148 21 233 134 357

193 236 31 3b9 748

0 232 330 365 1222

543 10 16 529 379

44 129 810 290 300

529 281 160 828 1011

445 29b 1755 1064 1783

860 983 707 33 868

724 2323 2930 1401 843

12 261 1800 865 1435

1 30 143 109 0 3110 1

12L47 943 700 875 245

729 1987 447 368 446 1

122 990 948 1082 22 1

75 482 5509 100 10 1

1071 371 790 6150 3321

1045 648 5485 1160 1864
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the areas cf code varies. Some areas may never be executed

[ 100]. As an example, if one assumes that there are one

hundred bugs in a program, that the failure rate is fifty

failures a week, and that cne is uslng a constant error rate

prediction, then after fifty bugs hav=_ been eliainated the

faiiur- rate should be to be twenty-five failures per week.

If the bugs are eliminated in the order that they are de-

tected, the first fifty tc be eliminated would be in the

most frequently exercised areas of code and the observed

failure rate would be less than twenty-five per week. if,

on the other hand, the most severe errors were corrected

first, there may be a situation wnere there are several an-

noying but non-critical bugs in a highly exercised portion

of code and the cbserved failure rate is forty failures per

week despite having eliminated fifty bugs.

Second, according to Ottenstein (101], the error rate

for modules, at the validation and integration stage, varies

iversiy with the size of a module. This theory has been

corroberated by Mctley and Brooks (102]. Motley and 3rooks

feel that this inverse proportion is an izdication that

-he larcer . odules were not as fuily debugged during the
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val-iation and integration stages and would go into the op-

-rations ard maintenance phases with a greater proportional

amount of errors. Ottenstein explained the phenomenon in

just the opposite manner. She feels that there is a learn-

ing and retention benefit hat operates with ldrge modules

and thus the larger modules will go into Operatins and

maintenance with a smaller proportional amount of errors.

A third reason for a variable rate of errors at the

validation and integration phase is also proposed by Otten-

stein [1033. Earlier developed modules are more fully de-

bugged in the initial testing because at that period in the

project there is a lot of time and money to do the job cor-

rectly. However, modules that are developed near the end of

a contract appear to be hastily and incompletely debugged

before being submitted for validation because both time and

money are running out. The authors propose a corollary to

this hypothesis. The more over-budget and behind-schedule

that a aroject is delivered, the higher should be the pre-

diction of errors detected in the maintenance phase.

Even if a manager could accurately predict the number of

errors that will he detected in a given time period, there

would still be a prcblem in scheduling the proper amount of
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resources. Different types of errors will require different

imounts of effort for ccrrection because they are of differ-

ent complexities.

H. CHAPTEF SUMMARY

N4-merous software tcpics are under study in an attempt

-c uncover explanations for the phenomenology of the soft-

ware life-cycle. Of more specific concern are the events

which lead to the increased expenditures during the opera-

tion and maintenance phase of the software project. Indica-

tions from research evidence are that not one single zactor

can be named as the dominant contributor to the life-cycle

maintenance costs. Instead, a multiplicity of factors are

cited as having an impact on the total system.

Recognizing the futility of identifying a single con-

tributor, reseachers have resorted to finding the control

elements that best define the changes that occur in system

characteristics. With a continued research effort, better

anderstanding and increased familrari-y of these system con-

trol elements may lead tc positive results in linKI Ag sys-

tem characteristics with maintenance requirements.
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Coupling the rising costs of computer software with the

relative decline in computer hardware costs would indicate

that computer software acquisition cost and maintenance and

operation cost (collectively referred to as software life-

cycle costs) constitute the greatest share of the data pro-

cessing budget. Consequently, predicting future software

costs for both existing systems (maintenance and operation

costs) and new development is of increasing concern to

management.

The phenomenology of the software development and

maintenance prccess is not definitively known. aesearch

suggests the existence of a fairly clear time-varying pat-

tern such as a Rayleigh curve or some cther similiar form.

The analysis is complicated by the presence of "noise" or

stochastic components. Additionally, the otservable compo-

nents (manpower, cost, time) are strongly subjected to man-

agement perturbation. This would indicate that although a

system has a characteristic life-cycle tehavior, if that be-

havior is not known to managers A R;41, then they will

-.espond reactively (non-optimally with time lags) to system

lamands. A reasonable basis now exists for expecting that
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an adequate phenomenological description may arise from the

following scurcea:

1) statistical mechanics;

2) information theory coupled with statistical communica-
tion theory;

3) diffusion and transport theory. (104]

Tracking of costs throughout the life-cycle is important

because, as pointed out in chapter Two, sixty percent of the

life-cycle effort is consumed during the operations and

maintenance phase. If this phase is treated as a level-of-

effort task, then far more resources than necessary for

maintenance are used. Given a fixed manpower or budget

constraint (very common in government), less than optimal

control of the wcrk during this phase increases the possi-

bility of maintenance work saturation (i.e. devoting all re-

sources to maintenance). This situation leaves no capability

to accomplish additional work.

Within the scope of this discussion, three types or

models for addressing maintenance cost estimr.icn will be

considered:

1) software cost estimation from a macroestimating vaew
using the Ncrden-Rayleigh curve parameters;

2) software cost estimation from a aicroestimating view
using a work breakdown strucrure(WS) methodology;

3) software evcluticn dynamics using system complexity Is
a cost monitor.
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The format of presentaticn will include a general descrip-

tion of the modei with subsequent application of the model

to the forecasting of costs within a maintenance scenario.

A. SOFTWARE COST ESTIMATING MODELS

1. Putnam's Software Ccst E3si _ain lodel

a. Description

This model attempts to provide quantitative an-

swers to the questions often asked by managers about soft-

ware projects. These questions are generally concerned with

project time duration, total cost, and the accuracy of the

figures presented. Putnam's (105] methods provide estimates

in the following areas:

1) Total life cycle effort in manyears;

2) Cost for the project;

3) Peak manpower needed;

4) Manpower needed at any specific time or phase in the
project;

5) Risk and variance analysis of derived estimates; and

6) Linear programming (LP) techniques to impose real world

management ccns:aints.

Putnam's contribution tc software cost estiaat-

.ng was to apply the Rayleigh curve to software life-cycle

manloading. Using t:e techniques based upon the life-cycla
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theory developed by Norden, Putnam did a number of empiri-

cal studies and found that the software life-cycle exhibits

a rise in manpower up to a peak and then a trailing off.

Basically, the Putnam model obtains estimates of

-:he measure of work in man-years and of the total develop-

ment time of the project. Development time in the Putnam mo-

Ael is defined as the elapsed time on the project up to the

point when the system reaches full operational capability,

but not including the system definition and functional

design/specification phases. The estimates of the total life

cycle in man-years and the development time are then used to

derive an equation giving the ordinates for a man-power ex-

penditure curve for a specific project. A yearly dollar

costing can then be computed for the project '7 muitipyiAg

the ordinates of the man-power curve at each year by the av-

srage cost/man-year to arrive at a dollar cost/year and,

subsequently, at a total dollar cost for the project. Put-

nam uses the Raleigh equation, which has been empirically

leter21ned to fit the project manpower load-ng prcfiIe for

large projects and tc best represent Norden's model. The

most popular form of the curve is the derivative form and is I
r_ xpressed by:
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2-at
Y' z 2Kate (3.1)

where

Y' = the number of man-years of effort expended per

year,

K = the total number of man-years required during

the life cycle of the project,

a = the curve shape parameter,

t = the elapsed time in years, and

e = the exponential function.

Wi.th the assumption that the shape of the curve

is scmehow related tc both the difficulty of a particular

development and to the skill level of the project team, a

means for expressing these relationships in terms of Ray-

leigh curve parameters was derived. The relationship of the

parameter a to davelopmant time (t ) is:
d

2
a = 1/2t (3.2)d

which, when substituted into the derivative form of the Ray-

leiqh curve, results in the following equaticn:

2 2
-(t /2t.

2 a
y, = K/t te (3.3)

d
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To use the above equation, estimates must be

found for the tctal life cycle in man-years (K), and tae

development time (t). Virtually every parametric software

cost model is based on an estimate cf computer program size,

measured in either source statements or object code instruc-

tions. Putnam uses source statements because that is what

programmers produce. Likewise, it simplifies the mathemati-

cal computations because compiler efficiencies are not con-

sidered. The relaticnshi4 that is used by Putnam to equate

source statements to development time and project effort is

given by the following equation:

(1/3)
Ss = Ck*K t (3.4)d

where

Ss = delivered source lines of code, and

Ck = state-of-technology constant.

Within the model, estimating program size is

viewed as an iterative process that should be recomputed

several times during the system definition and functional

design/specification phases in the software life cycle. The

first estimate is done at project conception and can be lit-

tle mor than a best guess used tc establish basic economic
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faasibility based on past software projects and expert opin-

i.n. As more knowledge is gained a-out the project, indivi-

dual segments of the system are estimated seperately and

then totaled to give a more accurate estiaate of the expect-

ed size. Also, standard deviations and confidence intervals

are derived Ercm statistical methods that use best and worst

case estimates.

To determine the technology constant, data from

past software projects must be inserted into the software

equation (3.4) tc derive the unknown variable Ck. It should

be noted that Ck is initially very difficult to determine

but should remain consistent for similar projects within a

specific organization. After the parameters Ss and Ck are

determined, various values of t and/or K may be substitutedd

into the software equaticn to produce a parametric graph

showing size versus effort and time (figure 3.1).

A constraint line determined by management and

representing a difficulty gradient for certain types of pro-

jects is then superimposed on the graph. Values :tat fall

below this line are determined to be infeasible for software

development.

After values and ranges are found for t and k,
d
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Figure 3.1. Size vs. Effort and Time Relaticnship

Aollar costs for the project may be computed by multiplying

plying an average labor rate per man-year by an expected

value of man-years tc derive an estimated total cost for a

project. A variance estimate for dollar costs may be oo-

-:ained in a similar manner from the variance of man-years.

lhile this model recognizes that real world managerial

constraints exist, they are not explicitly addressed. In-

stead it is raccmmended that linear programming techn1iues

shculd be used to account for everyday ccncerns such as
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contract deadlines, cost ceilings, and hiring practices and

c a pabilities.

b. Application to Maintenance Costing

Putnam's model takes a macro approach to answer-

ing the questions mcst often asked by managers concerning

the areas of time, effort, and cost. According to relation-

ships determined empirically, an overall estimate of man

power is obtained and subsequently allocated among the

different phases. To determine the risk involved in the es-

timation, statistical methods are used which give the manag-

er a 'feel' for the accuracy of the data presented to him.

As wcrk proceeds during the life-cycle, uncer-

tainty about the management parameters decrease. In order

to follow and track the time-varying behavior of a software

system, empirical data must be collected and plotted to show

the current labor force for any given time (figure 3.2).

Using this data stream, time series analysis can be done.

By turning the characteristic Rayleigh behavior into a

straight line, the actual manpower data may be fi-tted to get

a revised estimate of future resource consumtion.

The linear form of the Rayleigh-Norden curve is

illustrated in figure 3.3. This form may be obtained by di-

viding equation 3.3 by - and taking the natural logorithm of
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Figure 3.2. TyFical Plotting Structure

the result. This yields

2 2 2
Ln(y'/t) = (-1/2td )t + Ln(K/t ) (3.5)

which fits the familiar linear form y = mx + b.

Actual data is set up in a table form with addi-

tional calculated data points that are needed for the cor-

responding plot. Hypothetical data from Table IV is plot-

ted in figure 3.3 with the best stzaight line fi:ed to the

data points (determined by eye or calculation).

From this plot, Rayleigh parameters can be cal-

culated. The slcpe can be used to compute development time

(t d), while the intercept (K/t ), giver the value of t d

just obtained, yields the value of total effort, K. Calcu-

lations for determining these values are listed with the

figure.
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TABLE IV

Hypotheical Project Data

I t y yt t Ln(yi/t)

1 68 68.0 1 4.22

2 70 35.0 4 3.55

3 106 35.33 9 3.56

4 118 29.50 16 3.38

Prcjected management estimates can be caiculated

by extending the line to subsequent year points (figure

3.4). Continuing with the same example data, future man-

loading predictions are made by applying the sequence of

equations ccntained in figure 3.4.

Similiarly, resource estimation for additional

outyears may be computed. As mentioned earlier, :his model

-s an iterative procedure. Each year actual project data is

added to the table. The data points are replotted and the

best fit straight line is again determined. New values for

the slope and intercept are found and Frojections are tden

made based on these new values.
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Figure 3.3. Fitting the Best Straight Line
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figure 3.4. Line Bxtens.on and Prediction

2. ArM gAcrcest§imatj_;q AdS

a. Description

Realizing that there was a n~eed for a simple,

effective, reasonably accurate procedure for estimatiag and

controlling resources, Army Headquarters analysts produced a

comprehensive macroestinatizg procedure fo= allocating the

appropriate manpower commitment to &a applicati1on system at



any point in the system life cycle [106]. The procedure

-_nables users tc forecast the size of a new application

software project and suggests the manloading necessary to

accomplish the prcject workload.

Some functional estimators for the project man-

agor include:

1) optimum man-loading over life-cycle;

2) total manpower over life-cycle;

3) cost per year;

4) risk ;rcfiles;and

5) scope of applicability.

Initial analysis of all United States Army Com-

pater Systems Command (USACSC) systems yielded a datanase

from which statistics have been derived that permit estao-

lishment of control limi-s on resource allocation at any

point in the life-cycle of a system. Additionally, numeri-

c.l correlation points between effort/unit time and normal-

ized time were estahlished for system development mile-

stones. Using these pcints, the project manager can plot

"the project life-cycle profile of a software development ef-

fort in terms of the time that various milestones should be

reached And the level of resources (manpcwer) that should be
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applied to the system development a: those points (figure

3.5).

Excursions outside statistically determined control limits

shown in figure 3.5 should trigger the action officer to

take corrective action.

Using the mathemat;cal relatzonship developed by

Norden,

2
-at

Y' = 2Kate (3.1)

step-by-step procedures were developed for estimating system

variables for the following cases.

(1) C-a§s 1: Sy.et_ _Ajieady under de veloDUme .

e budg+ed). Using budget data, the maximum level

of manpower(y' ) and the number of years to reach maximum

max

effort(t ) i. determined. Rather than compute the values

max

for outyear manpcwer loading, rable V is used to compute the

values of y' for the apprcpriate t . . By multiplying any
ye

max

.ntzy opposite its time period by K, the appropziate number

of manyears are obtained. The units of K and t will deter-

mine the demensions.
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.I Y/Y R I

S.I.T.

MAN

Y'max2 -+- I

I--------

START t tMaint
Y Rax

0 1 2.38

NORMALIZED TIME (t/t
S'max

DESIGN CERTIFICATION
first 0.235
expected 0.433
last 0.618

SYSTEMS INTEGRATICN TEST
first 0.550
expected 0.660
last 0.768

PROTOTYPE EVALUAIION TEST
first 0.613
expected 0.800
las' 0.990

EXTENSION
first 0.613
expected 0.930
last 1.250

.,AINTEN& 1CE
first 2.096
expected 2.38
last 2.853

NOTE 1: First and last are at five percent probability lev-
el ie. there is a ninet* percent probability that
t/yimax will lie between irst and last for a par-
ticular milestone event. If nct, ask questions.

AOTE 2: Tabular entries are in normalized time units.

Figure 3.5. Milestones Applied to Project Profile
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TABLE V

Ordinates for Manpower Function

t I= I 1 2 3 4 5 6 7
I ylmaxl

01 a I .50 .1250 .0556 .0310 .0200 .0139 .0120 1

11 .60653 .22062 .10510 .06057 .03920 .02739 .020201

21 .27067 .30326 .17794 .11031 .07384 .05255 .309181

31 .03332 .24349 .20217 .14153 .10023 .07354 .055d5l

41 .00134 .13533 .18271 .15163 .11618 .08897 .069331

51 .00001 .05492 .13852 .14307 .12130 .09814 .079061

61 .01666 .09022 .12174 .11682 .10108 .084801

7 .00382 .05112 .09461 .10508 .09845 .086641

81 .00067 .02539 .06766 .08897 .09135 .084971

91 .00009 .01110 .04475 .07124 .08116 .080361

101 .00000 .00429 .02746 .05413 .06926 .073561

ill .00000 .00147 .01567 .03912 .05691 .065301

121 .00044 .00833 .02694 .04511 .056341

131 .00012 .00413 .01770 .03453 .047291

141 .00002 .00191 .01111 .02556 .038661

151 .00000 .00082 .00666 .08130 .030811

161 .00000 .00033 .00382 .01269 .023951

171 .00012 .00210 .00853 .018171

181 .00004 .00110 .00555 .013461

191 .0001 .00055 .00350 .00I741

201 .00000 .0002b .00214 .006891

------ -----------------------------------------------
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(2) Case II: few §.s_ e2 (no zesource data).

Total man-years of effort and peak time for manpower loading

is estimated using Bayes' theorem. (107] Based cn empirical

data from internal systems, a probability versus K density

function was derived without regard to type of system.

Further analysis determined frequency of system type and

probability of cccurence of each type. Using estimates

based on past USACSC experiences (the average K value for

all systems under development and average K for the func-

tional type of system), initial estimates for a new new de-

velopment are calculated from regression graphs. Then, by

applying Bayes' theorem tc average theze individual esti-

mates in the weighted probability zense yields a better es-

timate of K with a smaller standard deviation (i.e. better

confidence in th" estimate). To improve estimates and re-

duce uncertainty, Bayes' theorem is sucessively applied.

b. Application to Maintenance Costing

USACSC empirically determined that all ot tneir

systems reached a steady level of effort (maintenance level)

on the average of 2.38 times the amount of time that was

used to reach maximum effort. This relationship can be ex-

pressed as:
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t = 2.38t (3.6)saint X
max

In applying this equation, a system, with maximum level of

effort reached at year three, would reach a steady state at

7.14 years.

The level of effort associated with the steady

state maintenance phase was empirically determined by USACSC

to be twenty-three percent of y' with a ninty percent
max

confidence interval from eight percent to thirty-eight per-

cent of y' . At that point in the project life-cycle,
max

when 2.38t (twenty-three percent of y' ) is reach-y'
max max

ed, using numbers generated from the manpower equation

(3.1) should be discontinued and a constant level of effort

of twenty-three percent of y' should be used until the
max

system is replaced. Figure 3.6 shows a generalized

control-limit envelope of a ninety percent confidence inter-

val for the resource level.
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Figure 3.6. system Resource-Control Limits

B. SOFT~ikRE EVOLUTION MODEL

1. Lehman-Be.1adx 4

a. Description

There have been several attempts aade to assess

rasourcq allocati-cn to achieve the repair or mcd;.fication

:equired for a sltgle release, which is a new version of a
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system. A variety cf data has been collected relating to

module handle rate and release interval. Based on experi-

ence in dealing with different environments, it has been

suggested that development and maintenance trends exist giv-

ing rise to complexity measures. These measures, in turn,

can be determined by the average number of old module aan-

dlings per new mcdule and per fault fix, respectively.

As systems evolve over a series of releases, the

ratio of changed modules tc the total number of modules have

been found to mcnotonically increase and approach unity.

This ratio is an observed and directly measurable quantity

which describes the system's property of resistance to

change. Of importance is the indication that the number of

modules involved in a system modification is likely to be

proportional to the effort spent. [108, 109]

Belady and Lehman proposed a model in which ac-

tivity is of three kinds: progressive (P), antigressive (A),

and additional work related to system complexity (C). It

was hypothesized that a balanced budget (B) implies that at

any time

B = P + A + C. (3.7)
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Although simple, the modal captures two important aspects of

evolution dynamics; the sharing of the resources between

progressive and antigressive effort (where both A and C are

considered antigressive) and the absorption of total budget

and further growth limitation by the inevitable rise in the

cost of complexity.

Increase of C activity is hypothesised to stem

from neglect of A activity. Removal of resulting cumulative

neglect can be accomplished only by a temporary increase in

A. If the total budget, B is limited, the result is a tem-

porary decrease in prcgressive activity, P. It is assumed

that B, P, A, and C can te measured in cost per unit time.

The cost function is expressed in the following fashion:

I.t
Cost(t) =0 (1 - m)KP(,)dr (3.8)

where

KP = inherent A activity required for each unit of

P activity to prevent complexity growth;

= anagement factor, the fraction of KP actually

dedicated by management to A activity (O<m<1);

and

= a time constant.
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b. Application to Saintenance Costing

Preliminary analysis and simulation have been

carried out using a non-linear differential equation model

of evoluticn dynamics. It has been found that the model is

capable of reproducing some important phenomena observed in

lata that can be related to observed characteristics of the

system.

In figure 3.7, the simulation shows that the

code production rate (the progressive element) increases to

a maximum of about 225 modules per year. At the end of the

first year, the complexity has increased to the point where

such a production rate cannot be sustained with the budget

available, since an increasing resource demand is being made

by A and C activity. A balanced budget requires a reduction

in P activity, which later leads to a reduction in A activi-

ty. By year six, the system has reached its limiting size

with the resources available.

Although results seem promising, a great deal of

work must bq done before practical zesults 'n the form of an

accurate? predictive model can be achieved. From figure 3.7,

it would s-em apparent that application of control theory

to modules developed earlier may result in a substantial

payoff in financial terms.
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Figure 3.7. Growth Rate Simulation

2. Parr Model

a. Description

Putnam and Norden have prepared a Rayleign curve

model for the rate at which resources are consumed by soft-

ware engineering projects. One of the model's main assump-

tions is that the initially rising work rate is due to a

linear learning curve governing the "skill" available for

solving problems at time t. This assumption is questionable

because a linear learning curve is not theoretically sup-

ported, and the skill available on a project depends on the

rscurces which have been applied to it [110]. Thus, this
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assumption confuses intrinsic constraints on tae rate at

which software can be produced with management's economical-

ly governed choices on how to respond to these constraints.

Parr asserts that the rate of progress on a

software project is primarily determined by dependencies

among the problems which must be solved. Some problems can

be solved in parallel whereas others can only be handled se-

quentially. Let W(t) be the number of problems which have

been solved at time t and V(t) be the number of visible un-

solved problems at time t which can be solved (i.e., all

earlier required problems solved). When a problem is solved,

W(t) increases by 1; V(t), however, may increase or decrease

depending an whether or not the problem solved makes new

problems invisible/solvable. It is reasonable to assume

that prcblems solved early in the project will lead to more

unsolved problems, and that those solved later will have a

higher probability of not making new unsolved problems visi-

ble. X crude approximation to this is to assume that the

probability of a solved problem not generating more ansoived

problems is linearly proportional to the number of problems

solved. (1111

80



How doces the above relate to the rate at wtich

development programs can be made? Clearly, management can

=educe the rate of progress by supplying inadequate re-

sources. There is also an upper bcund to the amount of ef-

fort which can be usefully applied. Rapid progress using

large amounts cf inpu-t resources is possible only when taere

is scope for scving prcblems in parallel. In practice, a

different programmer (or possibly a team of programmers) can

be assigned to each separate visible unsolved problem. This

suggests that the rate at which useful work can be applied

*s proportional to V (t) , and that with this "optional" input

effcrt, steps in the development will he achieved at a rate

proportional to V (T).

Whereas the Rayleigh model proposes taat the

rate of progress will be proportional to the skill level and

number of problems remaining, the above has argued that it

is proportional to the visible unsolved problem set. A

aathematical expression yields:

2

7(t) = (1/4) sech t(t + c )/2) (3.9)

a hyperbolic function symetric in t with an integration con-

stant c ; while the Rayleigh function is:
3

2-/2
V(t) = Y1 (3. 1)
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2

,he sech model closely resembles -he Saylei~h model in the

latter half of the curve, but the front tail is positive

rather than zero like the Rayleigh (figure 3.8). Thus, in

2
the sech mcdel, projects dc not have well-defined starting

Points. This accounts for work done prior to the official

project starting date.

workrate3.51 0 0

0.- -o0 0 ...-------- Rayleigh curve
1 0 / ° ° oooQQoSch curve

I o o  / °
0to 0

0.11 j0

0. 0 - 1U -P- --- --- I ---- I)U--- I m

Figure 3.8. Sech Curve

One cf the principles of software programming is

that decisions initially made should be high-level struc-

tured ones which identify components for subsequent refine-

3e.t. Increasing the complexity of the initial decis;.ons in

-his manner is equivalent tc varying the distribution of tue

)--bability of a solved problem generating unsolved ones.

*; ,e~i'iing the assumption that -.his probability is linear,

- 'u workrate function can be derived:
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v (,-_) A .e~x _ (-._, .t} . .. (3.1 1)
(1 A exp (-2,at))

Thus, it may be seen that whereas the Rayleigh

model of software development proposes that the rate of pro-

gress will be proportional to the skill level and number of

Droblems remaining, this section has argued that it is pro-

portional to the size of the number of the visinle uasolved

node set.

Results obtained from the proposed model are

similiar to the Rayleigh model, except that account is taken

of work contributing to a project waich precedes its offi-

cial starting date. The proposed model has been shown to be

sufficiently determined for it to be possible to account for

-he effect cf different prcgramming methodolcgies on the na-

z'iral work associated with the project.

b. Applicaticn to Maintenance Costing

Parr suggests that exhaustion of the problem

space is the main cause for decrease in ma.ntenance effort

at the end of the prcjec. profile curve. In addition, the

structure of the software product achieved during the devel-

opment could affect the project work profile. While appli-

cations to maintenance ccsting have been addressed in
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concept only, implications are that integration techniques

for determining the area under the curve at a specific time

pe- riod will produce results similar to those obtained by

using Putnam's model.

C. CHAPTER SUMMARY

With the intent to gain management ccntrol of predicting

maintenance costs, various software cost estimating methods

and philosophies derived from observing trends and patterns

in the development cycle are being extended to encompass to-

tal system costs. supportive evidence for the accuracy of

the models discussed herein is contained, for the most part,

in software life-cycle simulations. It is anticipated, how-

ever, that the acute interest and increased awareness shown

in thr_ rescurce investments attributed to software mainte-

nance will be viewed more critically. Although lacking in

substantial procf for predictive validity, these models

serve as stepping stones in producing a composite model for

tracking main-tenance costs.



IV. MA.g._ SOFTWAR NA1NTEjANCg COSTS

Previous chapters have addressed topics that are being

critically examined for their impact on -he software mainte-

nance phase. They also discussed the application of current

levelopment software cost estimation techniques for obtain-

ing maintenance ccsts. The focus of this chapter will be

the presentaticn of a method for arriving at a well-

structured view of the management of the maintenance phase

of the sof+ware life-cycle. while a mathmatical model which

accurately explains the phenomena of the maintenance phase

still remains elusive, a planning and control model has been

developed to aid project managers. The structure of the mo-

del embodies two distinct concepts:

1) a planning ccncept - development of the management
strategy to cement the perceptions of the maintenance
issue;

2) a control ccncept - procedural analysis for estimating
the maintenance manloading requirements.

Subsequent sections will address application of each as-

pect of the model in depth.
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A. PLANNING CONCEPT

1. Pr~c anaq~ement

Primary responsibility for development of a manage-

nent strategy belongs to the project manager designated to

manage the system plan. As project manager, one must lzi-

: ially determine and define the maintenance requirement of

the mission profile for the system that is to be designed

(i.e. built-in maintainability).

Factors which must be considered early in the formu-

lation of a maintenance plan include:

1) Probability of change in requirements. while it may be
impossible tc define adequately the complete require-
ments for a large program, viewing the type o1 system
application (business, scientific, command and control)
and utilization rate will serve as indicators for the
amount of flexibility to be considered in the system
design.

2) Software performance requirements. Apain, application
type is the dictating force for analyzing this factor.

3) Hardware life-cycle. In -lanning for software mainte-
nance, the interaction o the nardware and software
life-cycle must he taken into account.

2. Objectives of th Maintenance Cc.nce.t

Derivation of maintainability requirements from the

description of the cperational zequirements provides tne

support planning criteria on which to base the maintenance

concepts approp-iate to the maintainability -equirement.

The maintenance concept, which basically defines criteria
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governing the sccne and methods applicable at each echelon

of maintenance, attempts to satisfy the quantitative main-

tainability requirement derived for the system and the plan-

ned support environment within which the system will oper-

ate. Early development of the appropriate maintenance

concept will provide a definitive and uniform basis for ac-

complishing the system design and support planning tasks.

3. Establis hi.g the gaintenance Policies.

System effectiveness is jointly dependent on several

parameters, of which performance characteristics, system re-

liability, and operational availability appear to be the

most critical. In effect, these parameters set baseline re-

quirements or constraints which may have impact upon the de-

sign process depending upon the maintenance policy that has

been established. While a boundless number of policy varia-

tions may exist, the following four categories identify the

range of policy choices. The basic distinction among these

four categories lies in the amount of resources invested

over time and the cumulative benefit received over time.
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a. Category I - No Management Ccntrol

A steady maintenance effort is applied with no

attempt for configuration control which is ensuring that a

master copy of all operational software is maintained. Com-

plexity of the prcgram will eventually reach the point where

locating errors and/or making changes becomes exceptionally

difficult. Gradually, the program becomes less useful until

it must be discarded and a new program developed. This

policy may prove to be cost effective for situations where

it is known that the nature of the application will lizit

the useful life cf the program.

b. Category II - Permanent Support Level with

Pericdic Redevelopment

As in Category I, a steady level of maintenance

support is provided by a permanent workforce. Redevelopment

or a new release can be planned for at regular intervals or

in response to a specific quantity of change requests.

c. Categcry III - Error Repair with 3ajor Changes

manpower support is set at the level needed to

correct program bugs. External programming support would be

required for making major changes.

88



d. Category IV - Error Repair Only with Periodic

Redesign

As in Category III, manpower is set at the level

needed to correct an unacceptable design error or program

bug. Change requests are used in establishing specifica-

tions for subsequent design of a new program.

4. !a Za _a. Str uctue

Since the level of repair policy must be compatable

with thp maintainability requirement, the maintenance con-

cept must be defined for each management level of mainte-

nance established. Beginning with the lowest level of us-

qrs, maintenance concepts are implemented with subsequent

policies for higher management levels developed to support

:he user level ccncept. To illustrate, maintenance may be

divided into three echelons as discussed below and shown in

figure 4.1.

1) User level. 3aintenance may be restricted to failure
reports and system restarts.

2) Organizational level. Technicians perform corrective
maintenance. Tasks performed would include locaion of
fault, module repair, and testing.

3) Contractor level. Maintenance performed at this level
may be used to supplement (augmented support) or to
replace (sustained support) the organizaticnal level
support.

69



ctivitee User Contract
I LevLevLevel Level

- ---- 1 Facility Agency and/ I
IWhere IRemote or I having Ior contract

eiperformed local site project facilities I

- ------ ----- -- I -
Maintenance a!Who per-formsl Maintenance division or Contract

I perscnnel support team perscnnel

I Restcre Locate acd- Locate mod- I
I Maintenance system to ule errors; i ule errors; 1
I action oerational repair and I repair and

satus return to rtrn touser user

Inspection Module -omp
aad restarts repair re 1minor malo! codingl 10o941hca-

ireairs and moifica- tions; major
tasks ad ustments tions codinq
t ssu mit testing rebuis

change rei
requestsII I - - - - -

Figure 4.1. Maintenance Levels

5. t_, Lif_e-_c.c1e Objectives

Utimately, the maintenance objective Is to achieve

the required level of maintainability in delivered systems

with an optimnm balance between resource support require-

ments and potential life-cycle costs. In order to meet this

objective, it is necessary to begin the system life-cycle

with the appropriate conceptual approach. As the software

product passes through several distinct phases in its evolu-

tion, maintenance prospects can be enhanced if adequate at-

tenticn is taken in each phase.

90



Figure 4.2 depicts the life-cycle as a simple

phase-to-phase flow diagram, joined by critical transition

poi-nts where it can be ascertained that the required main-

tainability objective has been achieved before transition to

the next phase. These transition points are denoted in the

figure as major achievement milestones. Each phase compris-

es several areas cf management endeavor in which the consid-

eration of the system maintainability is essential to the

attainment of milestone objectives. The software product is

re-examined at each milestcne to determine the future course

based on progress up to that point. As each milestone ob-

jective is met, maintainability becomes progressively more

tangible as a built-in feature of design. Maintainability

milestone requirements are summarized in the figure.

Milestone criteria can best be satisfied by syste-

matic application of approved procedures in the performance

of evaluation, management, and control tasks which are

geared directly to specfic objectives of individual mile-

stones in the line-cycle. A basic approach to maintainabil-

ity achievement as an evolutionary phase-to-phase 'growth'

process is shown in figure 4.3.
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Concept Formulation Phase Milestone Criteria. ,laintain-
ability requirements derived; maintenance concept estao-
Sished; maintainability documented in system specifica-
tions; maintainability milestones and task requirements
document ed.

(1) Proceed to design phase.

Design Phase Milestone Criteria. Maintainability design
approach and maintenance concept optimized by tradeoff and
conformance to specified requirewents and economic consid-
erations; maintainability requirements and milestone
criteria updated.

(2) Proceed to code phase.

Code Phase Milestone Criteria. Conformance to specified
maintainability requirements and maintenance concepts ver-
ified by evaluation; maintenance control procedures de-
fined in support documentation.
(3) Proceed to test phase.

Test Phase Milestone Criteria. maintainability degrada-
tion factors verified by test and evalution; maintenance
conceptst repair policies, and maintenance procedures
are verfied.
(4) Software product is approved for delivery.

Service Use Phase Milestone Criteria. Maintainability
characteristics, maintenance prodecures, and support costs
determined by periodic assessment cf management data;
problem areas identified for correction.

(5) Initiate change request, product enhancement or aew
evelopment; repeat life-cyc.e.

Figure 4.2. Maintenance Milestones in the System Life-cycle

3. CC.TROL CONCIET

1. 0. 2.f M

The objective of this thesis was to develop a

methodology for arriving at a good prediction of pure
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Figure 4.3. Haintenance Tasks in the System Life-cycle
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maintenance costs. Cetermining the requirements for pure

maintenance is considered valuable in that

1) estimates can be calculated of the manloading necessary
to form a maintenance support team which is composed of
either In-house or contract augmentation;

2) projections can be made for outyear maintenance support
and availability of manpower resources for developmen-
tal work.

With future research, the application of this model

may be extended to any software project; however, access and

availability of data precluded analysis of small and medium

sized projects. Only data from major projects was analyzed

for developing a computational algorithm.

In executing the computational algorithm, both macro

(system) and micro (functional area component) techniques

are used concurrently tc increase the validity of the est-

mates. An implicit assumption worth noting is that each

method should provide reasonably close estimat.es for the

same project. The macro technique, of course, is based on

total system characteristics and will prcvide the gross man-

ning requirements directly. Alternately, from the micro

:echnique, summation of the decomposed functional areas will

yield the gross manning for the total system.
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2. odel Deriviaticn

The data under study was taken from a large-scale

project reported by USACSC [112] and unpublished data from

the IB3 Space Shuttle Program [113].

a. Macrc Technique

Using the Raylelgh curve parameters derived by

Norden and Putnam (114, 115], a method was constructed for

obtaining total system maintenance requirements applicable

to the established management strategy. In his early work,

N rden made note of the fact that the iayleigh curve of a

project profile has a point of inflection at which the de-

crease in utilized manpower slows down in the descending

portion of the curve,

1/2

ti (4.1)

where

t = the infl-ction point of the project curveip

a = the shape parameter or spread of the curve.

The pcoint cf iaflection may have more signifi-

cance than originally recognized. If it can be shown that

the level of effort for the maintenance phase reaches a max-

imum at this point, the manlcading estimate calculated from
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this point can te used as the upper bound for maintenance

support. in essence, the current model suggests a new

mechanism for determining the level of maintenance support

required. Gained from the model is the benefit of relating

the work profile more directly to the intrinsic structure of

the project Frofile.

To simplify calculations, the project profile is

normalized with respect to t and y' as shown in figure
d max

1.4. Total life-cycle (K), has a normalized value of 1.

Based on this assumption and using Rayleigh curve relation-

ships, it can be shcwn empirically that the peak of mainte-

nance effort occurs at the inflection point.

(Y/Y' ) I
max I

max IT
y(.3 y-'

..... . -6 y'max

d
t t t

d ip is

Figure 4.4. Normalized Rayleigh Curve
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From the normalized curve values, the shape

parameter is found with the following relationship:

1
a ----- 0.5 (4.2)

2
2t
d

Substituting this value of a in the following equation, the

inflection point (t ) of the project profile is obtained.
ip
. 1/2

t = I-_2_ 1.73 years. (4.3)ip 2a eas1.3

Uanloading requirements at time t (y )
ip 1.73

can be shown mathemati-cally to be equal to the maximum man-

load (y' ) which occurs at tae peak (t) of the maintenance
t a

m

phase profile. Stated in the format of a mathmatical equa-

tion, this equality has the form

(project inflecticn = (maximum maintenance
point manning) phase manning)

or = ye (4.4)
t t
ip M

Substituting normalized values into the Rayleigh (manpower)

equation

2

ye = 2(1) (.05) (1.73)e (1.73) (4.5)(1.73)

ye = 0.38 manyears. (4.6)
(1.73)
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In order to calculate maximum manning for :he

maintenance phase, parameters for the maiatenance curve must

be defined. Actual time elapsed between the beginning of the

maintenance phase (t) and the maximum level (t) is comput-
0 3

ed using empirical data recorded by USACSC. Results from

:he USACSC research indicate that the maintenance phase,

which accounts for twenty percent of the total life-cycle

manpower (K), begins at aFrroximately 1.3 years normalized

time. With this estimation, actual time elapsed (t ) can be
e

found by

t = t - t = 0.43 years. (4.7)
e 0 0

The sFread of the maintenance curve (a) is
m

determined by subtituting the elapsed tiae value into the

already familiar equation

1
a - 2- = 2.71 (4.8)~2

2 (t
e

The value cbtained for the shape parameter suggests a curve

having a wide spread, an expected characteristic of the

maintenance phase profile curve. Computation of the max

manloading for tne maintenance phase irom the basic manpowe.

equation gives
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(-2.71) 2.

y = 2(.2K) (2.71) (.433)3 2 (4.9)(t )
a

y' = 0.38 =y@ (4.10)(t) (t .)
m ip

With y' defined to be the upper boundary for

m

the maintenance effort, another boundary can be identified

as the lower limit for maintenance effcrt. By determining

the value of the inflection point of the maintenance curve

(t.) , a inimum support level can be found from

3/2

tim .74 years. (4.11)

Converting this time to normalized time (t)
n

t + t (4. 12)
.1 o in

t = 1.3 + .74 = 2.04 years (4.13)
n

and substituting this valae in the manpower equation yields

ye = .26 manyears. (4.14)(2.04)

The manpower loading calculated for the inflec-

-:ion point of the maintenance phase (ti) closely approxi-

mates the value identified by USACSC as the steady state

level of effort. Establishing maintenance at the miniaua

:evel can be interpreted as a Categcry IV policy.
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b. Micrc Technique

Decomposition, more commonly referred to as the

work breakdown structure (WBS) method, has been a predomi-

nate methodology for estimating manning resources. A system

4s considered to contain subsystems which are further divid-

ed into smaller hierarchial structures until the smallest

progrmming element is reached. Once the functional areas

are defined, characteristics (complexity, productivity, er-

ror rate, etc.) of each must be reviewed to determine the

level of effort needed for maintenance. Appendix A contains

an example of a micro-estimating methodology along wita the

sample data used.

3. Sam_,lie 1.2 ijon

a. Sample Data

Data used for this sample application of the

control concept was provided by IBM Federal Systems Space

Shuttle Program [116]. The raw manning data is Erovided in

Appendix A. The remainder of this section is a step-by-step

example of the computicnal algorithm which implements the

control concept of the proposed model.
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(1) -acro technique

td = 2.5 t - 4.33d ip

K = 1343 (4 = 207 manyears(4.33)

a = .08 t = 5.1 yearsin'

YI = 325 y' = 137 manyearsmax (5. 1)

NTT.-(2) Micro technique
LSB = 2aintenance support

boundary y = component manning

Boundary level established
fyom analysisof macrc and y= 195 manyearsmicro estiations.

(refer- to Appendix A)

Pigure 4.5. Plotted Sample Data
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b. Computational Algorithm

S -a 2 Fit the actual budge: data to a Ray-

leigh curve. Figure 4.5 shows plotted data for the Space

Shuttle program.

Steg 2. Determine maintenance support boundary

lines by calculating the inflection points of both the pro-

ject profile and maintenance phase curve.

Step 3. Determine support level requirements

using micro-estimating techniques.

St2R _. Compare values obtained from macro and

micro methods. Analyze the differences from an economic

standpoint based cn management policy.

S1_- 5. Predict outyear budget requirements for

maintenance/new develcpment contingent on management policy.

c. .Management Applications

Althcugh the results shown here relate to only

one set of data, they are encouraging in the support they

give the model. The model presented in this thesis could

provide a direct means to evaluate the impact of current and

future management practices on the life-cycle cost of tne

software system. The idea of the development of a mainte-

nance strategy coupled with the use cf the computational
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algorithm provides the project manager with some powerful

management tools. While additional research is warranted,

it is purported that application o the model will prove

enlighting in the fc1lowing respects.

(1) De~t~e~nn1 jaintenance Supocrt Level.

Preliminary estimates obtained from inflection point predic-

tors may be used as a starting point for planning workforce

requirements to be drawn from internal assets. Likewise, if

external or contracted support must be procured, evaluations

of submitted bid proposals will be necessary. Although yet

unproven statistically for accuracy, the inflection point

predictors appear to define aaximum (t ) and minimum (t )ip in

boundaries for maintenance levels.

In accordance with the type of maintenance

strategy chosen, a maintenance level boundary can be select-

ed. For example, if a Category IV policy is selected, man-

power needs would approach the minimum boundary. On the

other hand, a Category I policy would require resources ap-

proximate.d by the maximum level. With these boundaries to

aerve as guidelines, contract proposals can be viewed more

critically.
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(2) Fore1astin Resouc e Distributi.on. Whether

in internal or external wcrkforce is used, plann.ng and

budgeting estimates of manloading are usually projected for

jiscrete timeframes. During the maintenance phase of a via-

ble project, the workforce in terms of total number remains

stable; however, the work distribution or functional roles

of personnel may change (i.e. programmers may shift from

maintenance work to development work). Within governmental

agencies, this stability may be attributed to fixed contract

levels or established manning levels, neither of which can

be easily changed. Therefore, the management problem be-

comes one consisting not only of how many personnel are

needed, but also how can assets best be utilized.

In light of the fact that the users have

changinq requirements, the issue of workforce allocations

for new research and development must be considered. Based

on the Rayleigh curve characteristics for a specific project

and using a fixed support level environment, approximate

values for worklcad distribution can be calculated.

By method of integration, the proportion of

the total support level force that will be dedicated to pure

maintenance and/cr new development in future timeframes can
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be calcalated. Figure 4.6 illustrates this point using the

sample data.

MY I

I
300 M SB =Y, i

200

100

t t
d ip

t 2
2 - at
'SB - 2Kate dt

'I

2
= 207t 1 - 13 3e-at 6

15 15
= 101 MY (resources available for new development)

Note 1:
MSB = maintenanqe support boundary. In this example, tne

boundary is established at the pr oject prof4le inflec-
tjon poInt. Alternately, the bou ndarv woula be estab-
lisheg to indicate the manning level of the mainte-
nance workfcrce.

Figure 4.6. Forecasting Future Requirements

Maintenance information gained with this

oversight method is twofold. The separation of development

work (enhancements, additions, new design) from maintenance
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work (debugging, design error correction) is accomplished,

-hereby allowing for better interpretation of the project

investment. The comparison of the relative proportion of

maintenance manning versus development manning for reviewing

project viability can also be made. This concept will be

liscussed Tore fully in the next section.

(3) c__inLs qcffiqguation Control. A pauci-

ty of available data prevents the comparison of actual and

predicted manpower that is required during the maintenance

phase. The assumption that the maintenance tail is flat or

reaches a steady state seemingly arose from this lack of in-

formation. It is the authcrs' contention that new releases

of a software product may, in. fact, cause increases in the

maintenance tail cver time.

Lehman and Belady's [117, 118] research,

discussed in chapter 3, gives strong indications that subse-

quent celeases for a software product increase complexity

and the amount cf antigressive (maintenance) work that iz

r-quire. for the total system. Two inherent characterist acs

of the software product directly affected by a new release

are the system configuration and the size of the system

problem space. From a prcject profile view, -he time period
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when these new releases occur is during the maintenance

phase. 4!th the assertion that the work allocated to the

completion of a new release must he considered as a phase

within the project life-cycle, the increase in maintenance

costs can be explained.

As the diagram in figure 4.7 indicates, the

changes induced hy the release phase will cause the Jevel of

maintenance to increase. Unless carefully monitcred, each

new release may cause an increase in the maintenance re-

guirements until the original maximum maintenance support

level is reached or exceeded. When this occurs, management

is forced to make a cost-benefit assessment of the software

system.

Using the concepts introduced earlier (in-

flection pcint predictors and resource distributicn fore-

casting), maintenance saturation of the software system can

be detected. The support line obtained from the inflection

point predicter (t. ) serves as a guideline for total systemip

saturation. Management policy sets forth limits for corres-

ponding maintenance and/cr development expenditures which

establishs a budget saturation level. These saturation

levels may be equal or different. In an attempt to preclude

107
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Note 1:

:iSB = maintenance support boundary

SSL = svstz-m saturation level, equivalent to curve inflec-
tonpin where any maintenance a to ve ths level
Would t e ccnsidered antigressive

BSL = budiget saturation level, establi-shed by management
wherm ossitle values may be:

BS = SSL
BSL < SSL

?igure 4.7. New Belease Effect on daintenance Level
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excessive maintenance costs, the saturation level viewed as

lominant is used to trigger management'S attent-icn toward a

system rebuild. For the subsequent rebuilt system, a new

Rayleigh curve is plotted and a new cycle of planning and

contol begins.

Z. CHAPTER SUMMARY

Pr.sented in this chapter is a Dilevel model for manag-

ing software maintenance costs. The model, composed of both

a planning concept and a control concept, suggests that the

creation of a management strategy will have far-reaching ef-

fects in the system total life-cycle ccsts. Used concur-

rently, the two model concepts allow fc: smoother transla-

tion of maintenance ob-ectives between the strategic

olanning level and the operational control level.
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V-.220 A.21, 99191us][,1 11. RECOMINDZION

Presented in this chapter is a summary of the thesis,

a enezal conclusions, and recommendations for further study.

A. SUMMARY

Various methcdoiogies and system -actors relating to

software cost accounting have been reviewed in an attempt to

develop a cost mcdel fcr the prediction of pure maintenance

costs. The distinction between development costs and

maintenance costs is ccns± ered necessary in order to pre-

sent a realistic picture of the annual expenditures within a

given budget constraint. Without a refined separation of

these two cost entities, tudget control is a more difficult

task.

Beginning with a broad background of what maintenance is

and is not, Chapter One uncovers the paradox that exists in

obtaining a consensus for a common working definition of

maintenance. Different schools of thought within the mili-

-ary and civilian research fields have produced inconsisent

results when citing the proportion of the the life-cycle

costs attributable to total system ccsts. This inconsis-

tency may be due, in part, to the range of cost types (new
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development, pure maintenance, other administrative support

activities, etc.) that exist during the maintenance phase.

While some researchers may view each cost type individually,

others consider the maintenance costs to be an aggregate of

all expenditures during the maintenance phase.

In Chapter Two, an overview of the extrinsic and intrin-

sic charactistics of a software system which create the

maintenance setting is prcvided. It is apparent from the

detailed discussion of the more salient concepts that the

maintenance issue is not only complicated, but also still

somewhat elusive. While these concepts have been useful in

explaining system characteristics and predicting future be-

havior, they fail to produce a means for direct translation

to a monetary value.

Although no cost estimation technique adaptable for man-

agement use has been developed solely for predicting mainte-

nance costs, application of software cost estimating schemes

originally intended to evaluate the development phase have

been extended tc include the maintenance chase. Chapter

Three is devoted to a review of various models that nave

been suggested as appropriate for addressing the maintenance

cost uncertainties. The models two avenues for approaching

the issue:

. . .. .' i i i I I I11 1



1) a total system ccncept using the Norden-Rayleigh curve,
and

2) a d'namic system philosophy using software evolution

Current unavailability of a basic method for adequately

determining miantenance expenditures and the increasing con-

cern of DOD for the exorbitant funding required to sustain

software system oFerations inspired the authors to develop a

flexible management model. Chapter Four elucidates a plan-

ning and control model which can provide project managers

with additional information to assist in budget planning and

decision making. This model proffers four maintenance stra-

tegies which may be used in conjuction with calculated maxi-

mum and minimum maintenance level support boundaries specif-

ic to the project profile.

B. CONCLUSION

While an abundance of research in software economics and

software engineering exists, very little has been done that

relates to the maintenance phase of the software life-cycle.

As a reisult, there is an obvious lack of raw data available

to analyze the proposed model for validity and sensitivity.

With additional research, it is believed that the model

presented in this thesis will provide a direct means to
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evaluate the impact of current and future management prac-

t.ices on the life-cycle costs of software systems. The com-

bined use of the simple macroestimating and ,icroestimating

techniques allows the manager to look at the maintenance

problem from different perspectives while increasing the

confidence in the projected maintenance costs. Additional-

ly, the computation of inimum and maximum levels of effort

for a specific project leads to further diminution of the

problem when management has established a particular mainte-

nance strategy.

C. RECOMENDATICS

It is recommended that additional work within DOD be un-

dertaken to further the research objectives of software

maintenance costs and that this work include the following

actions:

1) adoption of a standard definition that will distinguish
between maintenance costs and costs incurred In the
maintenance life-cycle phase;

2) institution of longitudinal research by software sup-
port facilities to collect maintenance data to be usad
in the development of management tools with improved
capability;

3) investigaticn of the usage of additional prediction
tools to obtain a more complete view of the domain of
software behavior during the maintenance phase; and

4) analysis of empirical data to prcve or disprove the
following statement: The mo-e ovez-budget and behindschedule that a project is delivered, the nigher snouid
be the prediction of errors detected in the maintenance
phase.
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&PPzNQ~rx

Contained in the following text is a partial sum-

mary of a microestimating technique (Matrix Estimation

Process) obtained from IBM Federal Systems Division,

Houston, Texas.

IAT t I _HOD

Definition: The .atrix Method is a systematic procedure

which can be used to delineate elements of a

software project and map them against associat-

ed ccst elements to arrive at a project esti-

mate.

Things that can be accomplished:

o Lay out project elements

o Stepwise retine the elements

o Estimate the elements

O Subtotal the estimates by grouping

the elements

o total up the group estimates

o aefine total estimate



gjS o1 IbS latrix Z~itbod

I. Determine functional elements of project.

2. Quantify Maintenance needs based on :

Level = Function Size / ((Productivity) (Complex-.ty)

(Factor) .

3. Consider critical skills, operations s"pport, and man-

agement and support.

. Summarize for project.

5. Plot with Rayleigh curve.

115



IjIQcess

1. Lay out a table of functional areas of code, require-

ments areas, test areas, or functicns to be performed.

Using the fcllcwing formulas, calculate the level re-

quired to maintain each functional area or function:

Applications Level = (FW Size)/((154) (2) (12) (2))

FCOS Level = (FW Size)/((100) (2) (12) (2))

SDL Level a (K Line Size)/((15) (2))

Computer Resource = (YEID Hrs Wk)/ (28)

GN&C Verfi. Level = (Number Test Cb ',, 30) (2))

SSW Verif. Level = (Number Test C&c:*.- (5 (2)

SM/PL Verif. Level = (Number Test CAe-;{|20) (2)

Perf. Verif. Level = (Number Test Caiet4/((5) (2)

All Others:

Level a (Development or Support Level)/(2)

TSO Level = Requested support level per site

2. Look at critical skills to see if each functional area

is adequately covered.

3. Estimate error rate and rate of change to see if level

should be altered.
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Saint. CPN &
Area Size Level Suppcrt M&S Total

AkSD 272918 FW 42.0 12.0 10.0 64.0

CON/Qk 5.0 --- 1.0 6.0

SEC. SUPP 11.0 ---. 11.0

&SVO 1247 TC 83.5 5.0 15.5 104.0

140.5 17.0 26.5 195.0

.3atrix Summary represents decomposition of the Space Shut-

tle Program into major functional areas.
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Code Maint. GPN 6
Area Size Level Suppcrt I1&S Total

SM 54880 6.7 3.0 1.3 11.0

VCO 57145 5.2 --- .8 6.0

GNC 129918 16.7 4.0 2.8 23.5

1.. 10.4 5.0 2.6 18.0

P.A. 30975 3.0 --- .5 3.5

AASD 2.0 2.0
M&S ....

Totals 272918 42.0 12.0 10.0 64.0

*Note: This table illustrates an additional decomposition

of a uajcz functional area into subcomponents.
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11 Y0:o~ project data points
*--support level

yo

300

I TD 1(year)
IT I~

t =2.5
d

k =13413

a = .08

yomax 32
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